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Abstract
The equation of motion for a time-dependent weak value of a quantum-
mechanical observable is known to contain a complex valued energy factor
(the weak energy of evolution) that is defined by the dynamics of the pre-
selected and post-selected states which specify the observable’s weak value.
In this paper, the mechanism responsible for the creation of this energy is
identified and it is shown that the cumulative effect over time of this energy
is manifested as dynamical phases and pure geometric phases (the intrinsic
phases of evolution) which govern the evolution of the weak value during its
measurement process. These phases are simply related to a Pancharatnam
phase and Fubini–Study metric distance defined by the Hilbert space evolution
of the associated pre-selected and post-selected states. A characterization of
time-dependent weak value evolution as Pancharatnam phase angle rotations
and Fubini–Study distance scalings of a vector in the Argand plane is discussed
as an application of this relationship. The theory of weak values is also
reviewed and simple ‘gedanken experiments’ are used to illustrate both the
time-independent and the time-dependent versions of the theory. It is noted
that the direct experimental observation of the weak energy of evolution would
strongly support the time-symmetric paradigm of quantum mechanics and it
is suggested that weak value equations of motion represent a new category of
nonlocal equations of motion.

PACS numbers: 03.65.−w, 03.65.Ta, 03.65.Vf

1. Introduction

The theoretical notion of the weak value of a quantum-mechanical observable was introduced
by Aharonov et al [1–3] over two decades ago. This quantity is the statistical result of
a standard measurement procedure performed upon a pre-selected and post-selected (PPS)
ensemble of quantum systems when the interaction between the measurement apparatus and
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each system is sufficiently weak. Unlike the standard strong measurement of a quantum-
mechanical observable which significantly disturbs the measured system (i.e., ‘collapses its
wavefunction’), a weak measurement of an observable for a PPS system does not appreciably
disturb the quantum system and yields the weak value as the measured value of the observable.
Weak values reflect the nature of a virtually undisturbed quantum reality that exists between
the boundaries defined by the PPS states.

A series of experiments performed in recent years has verified aspects of weak value theory
[4–8] and the theory has been applied in such diverse areas as contextuality [9], quantum
stochastic processes [10, 11], quantum trajectory theory [12], tunnelling and arrival times
[13–16], non-locality and consistent histories [17–19], Hardy’s paradox [20], superluminality
and negative kinetic energy [21, 22], momentum transfer in welcher Weg experiments [23],
nonclassicality of coherent states and thermal radiation [24, 25], semiclassical weak value
theory [26], quantum measurement theory [27–35] and quantum communications [36, 37].

The equation of motion for a time-dependent weak value was first introduced by Parks
et al [5] who noted that a peculiar energy—the weak energy of evolution—naturally appears
as a factor in this equation. This energy occurs at the time of interaction between the
measurement apparatus and the quantum system during the measurement of a weak value of a
system observable when the associated PPS states are explicitly time dependent. Although this
energy is not directly measured during this process, it nonetheless has the mathematical form
of the weak value of the difference between the two Hamiltonian operators Ĥi and Ĥf which
describe the evolution of the PPS states, respectively. Since its discovery certain geometric
and dynamical properties of this energy have been studied [38] and its significance has been
discussed within the context of Hamilton’s Principle [39].

The purposes of this paper are to identify the mechanism through which the weak energy
of evolution is created at interaction time and to examine how this energy determines the
value and influences the evolution of a time-dependent weak value during the measurement
process. The new results found and reported here are (1) while the actions of Ĥi and Ĥf

upon their associated PPS states take place at pre-selection and post-selection times earlier
and later than the interaction time t, respectively, the creation of the weak energy of evolution
at t is a consequence of the forward and backward time evolutions of these actions to t; (2) the
accumulation of these actions over time are physically manifested as dynamical phases and
complex valued pure geometric phases—the intrinsic phases of evolution—which determine
the weak value of the observable at t; (3) these intrinsic phases are related to a Pancharatnam
phase angle and a Fubini–Study metric distance associated with the Hilbert space evolutions
of the PPS states; and (4) as an application, this relationship provides a simple Argand plane
vector representation of weak value evolution in terms of associated Pancharatnam phase angle
rotations and Fubini–Study metric distance scalings.

The remainder of this paper is organized as follows: in the next section weak
measurement/weak value theory is reviewed and illustrated using a simple photon polarization
measurement ‘gedanken experiment’. The equation of motion for a time-dependent weak value
is derived in section 3 and the associated forward-backward time evolution mechanism that
creates the weak energy of evolution at interaction time is formally identified. The intrinsic
phases of evolution are defined in section 4. Section 5 establishes both the geometric nature
of these phases and their relationship to a Pancharatnam phase angle and a Fubini–Study
distance defined by the PPS states. This relationship is applied in section 6 to describe the
evolution of a time-dependent weak value in the complex plane in terms of vector rotations
and length scalings. In section 7, a time-dependent generalization of the section 2 ‘gedanken
experiment’ is used to illustrate the theory developed in the preceding sections. Concluding
remarks comprise the final section of this paper.
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2. Weak measurements and weak values

2.1. Theory

Consider the von Neumann description of a standard quantum measurement at time t0 of a
time-independent observable Â which describes a quantum system in the initial fixed state
given by |ψi〉 = ∑

kck|ak〉, with Â|ak〉 = ak|ak〉. The Hamiltonian for the interaction between
the quantum system and the measuring device is

Ĥ = γ (t)Âp̂, (1)

where γ (t) = γ δ(t − t0) defines the strength of an impulsive interaction at time t0 (note that
the time of measurement is defined to be the time of interaction) and p̂ is the momentum
operator for the measuring device’s pointer that is conjugate to the pointer’s position operator
q̂. Let |φ〉 be the initial state of the pointer of the measurement apparatus and assume that
〈q|φ〉 ≡ φ(q) is real valued with 〈q〉 ≡ 〈φ |̂q|φ〉 = 0.

Before the interaction occurs, the initial state of the combined pre-selected system and
measurement pointer is the tensor product state |ψi〉|φ〉. Immediately after the measurement’s
impulsive interaction the combined system is in the state

|�〉 = e− i
h̄
γ Âp̂|ψi〉|φ〉 =

∑
k

ck e− i
h̄
γ akp̂|ak〉|φ〉, (2)

where use has been made of the fact that
∫

Ĥ dt = γ Âp̂. The exponential factor in this
equation is the translation operator Ŝ(γ ak) for |φ〉 in its q-representation. The action of
Ŝ(γ ak) upon |φ〉 in the q-representation is 〈q |̂S(γ ak)|φ〉 = 〈q − γ ak|φ〉 ≡ φ(q − γ ak), i.e.
it translates the pointer’s wavefunction over a distance γ ak parallel to the q-axis. Application
of the closure relation 1̂ = ∫ |q〉 dq〈q| to equation (2) yields the following expression for |�〉
in terms of the q-representation of the measurement pointer:

|�〉 =
∑

k

ck

∫
〈q |̂S(γ ak)|φ〉|ak〉|q〉 dq.

The q-representation of this state is

〈q|�〉 =
∑

k

ck〈q |̂S(γ ak)|φ〉|ak〉,

where use has been made of the fact that 〈q|q ′〉 = δ(q −q ′) and
∫

f (q ′)δ(q −q ′) dq ′ = f (q).
When the measurement interaction is strong, the quantum system is appreciably disturbed

and its state collapses to an eigenstate |an〉 leaving the pointer in the state 〈q |̂S(γ an)|φ〉 with
probability |cn|2. Such measurements of an ensemble of identically prepared systems yield
the centroid value γ 〈A〉 ≡ γ 〈ψi |Â|ψi〉 of the pointer probability distribution

|〈q|�〉|2 =
∑

k

|ck|2|〈q |̂S(γ ak)|φ〉|2 (3)

as the measured value of Â. Note that if the pointer position uncertainty �q is sufficiently
small, then equation (3) is comprised of separated narrow peaks each centred on an eigenvalue
ak .

In contrast to strong measurements, a weak measurement of Â occurs when the interaction
strength γ is small so that the system is essentially undisturbed and �q is much larger than
the eigenvalue separation. In this case, equation (3) is the superposition of broad, strongly
overlapping |〈q |̂S(γ ak)|φ〉|2. Even though a single measurement provides little information
about Â, many repetitions allow equation (3) and its associated centroid to be determined to
any desired accuracy.
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If—after a weak measurement—the fixed system state |ψf 〉 =
∑

k
c′
k|ak〉 is post-selected

such that
〈
ψf

∣∣ ψi〉 �= 0, then the resulting pointer state |�〉 is given by

|�〉 ≡ 〈ψf |�〉 =
∑

k

c′∗
k ck

∫
〈q |̂S(γ ak)|φ〉|q〉 dq. (4)

Since

Ŝ(γ ak) =
∞∑

m=0

[−iγ akp̂/h̄]m

m!
,

then ∑
k

c′∗
k ckŜ(γ ak) =

∑
k

c′∗
k ck

{
1 − i

h̄
γ p̂Aw +

∞∑
k=2

[−iγ p̂/h̄]k

k!
(Ak)w

}
,

where

(An)w =
∑

k
c′∗
k cka

n
k∑

k
c′∗
k ck

= 〈ψf |Ân|ψi〉
〈ψf |ψi〉 ,

with the weak value Aw of Â given by

Aw ≡ (A1)w = 〈ψf |Â|ψi〉
〈ψf |ψi〉 . (5)

It is clear from this that Aw is—in general—a complex valued quantity which can be directly
calculated from the associated theory. Also note that when |ψi〉 and |ψf 〉 are nearly orthogonal
the real part Re Aw of Aw can lie far outside the spectrum of eigenvalues for Â, i.e., its values
are eccentric weak values.

When the approximation∑
k

c′∗
k ckŜ(γ ak) ≈

{∑
k

c′∗
k ck

}
Ŝ(γAw) (6)

is valid, then equation (4) becomes

|�〉 ≈
{∑

k

c′∗
k ck

}∫
〈q |̂S(γAw)|φ〉|q〉 dq

so that

|〈q|�〉|2 ≈
∣∣∣∣∣∑

k

c′∗
k ck

∣∣∣∣∣
2

|〈q |̂S(γ Re Aw)|φ〉|2. (7)

This corresponds to a broad pointer position distribution with a single peak at 〈q〉 = γ Re Aw

and occurs when the following conditions on the pointer momentum uncertainty �p are
satisfied [40]:

�p 	 h̄

γ
|Aw|−1 and �p 	 min

(n=2,3,...)

h̄

γ

∣∣∣∣ Aw

(An)w

∣∣∣∣ 1
n−1

. (8)

In expressing equation (7), use has been made of the fact that since 〈q|φ〉 is real valued, the
pointer position must be translated by γ Re Aw. The imaginary part Im Aw of Aw influences
the mean of the pointer’s momentum and translates it from the initial mean by an amount
proportional to the product of Im Aw with the variance of the initial pointer momentum
distribution [34].

4



J. Phys. A: Math. Theor. 41 (2008) 335305 A D Parks

Detector

Slit

Post-selection
Filter

Prism

X

Z

Laser

Pre-selection Filter

Figure 1. An apparatus for measuring the weak value of the photon linear polarization operator.

2.2. An example

In order to illustrate the theory of weak measurements and weak values, consider a ‘gedanken
experiment’ in which the apparatus depicted in figure 1 measures the weak value of the
photon linear polarization operator Q̂. Here linearly polarized photons are created by passing
an unpolarized laser beam propagating along the positive z-axis of the laboratory Cartesian
reference frame through a pre-selection polarization filter. A birefringent prism segregates
these photons into two beams according to polarization state. Their passage through a second
polarization filter and then a narrow slit provides the necessary post-selection measurement
and the spatial distribution required for observation by a detector.

The x- and y-directions in the laboratory frame define the vertical and horizontal
polarization eigenstates |+〉 and |−〉, respectively, with Q̂|±〉 = ±|±〉, 〈±| ±〉 = 1 and
〈±| ∓〉 = 0. Each filter’s transmission axis lies in the x–y plane with fixed transmission
axis angle settings referenced to the x-direction. The birefringent prism is specially cut and
oriented in the laboratory frame to provide a very slight x-component of momentum to the
photons passing through it according to the interaction Hamiltonian (equation (1))

Ĥ = γ δ(t − t0)Q̂p̂x.

Here the pointer state of the apparatus is represented by the Gaussian distribution of beam
photons in the x-direction with 〈x〉 = 0 as its initial peak value.

Let the transmission angle settings for the pre- and post-selection polarization filters be
fixed at α and β, respectively, so that the associated PPS states are |ψi〉 = cos α|+〉 + sin α|−〉
and |ψf 〉 = cos β|+〉 + sin β|−〉. After the post-selection measurement, the pointer state is
(equation (4))

|�〉 = cos α cos β

∫
〈x| Ŝ(+γ )|φ〉|x〉 dx + sin α sin β

∫
〈x| Ŝ(−γ )|φ〉|x〉 dx.

When equation (6) holds, then the last equation provides the following observed translated
pointer state distribution in the x-direction with a single peak at 〈x〉 = γ Re Qw = γQw

(equation (7)):

|〈x|�〉|2 ≈ cos2(α − β)|〈x |̂S(γQw)|φ〉|2, (9)
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where

Qw = cos(α + β)

cos(α − β)

has been computed directly from equation (5). It is easy to see from this that the values for
Qw can be eccentric, e.g., Qw > 1 when α = π

4 and −π
4 < β < 0 (compare this with

〈Q〉 ≡ 〈ψi | Q̂|ψi〉 = cos 2α ∈ [−1, 1] ).
Approximation (9) is valid when the inequalities (conditions (8))

�px 	 h̄

γ
|Qw|−1 and �px 	 min

(n=2,3,...)

h̄

γ

∣∣∣∣ Qw

(Qn)w

∣∣∣∣ 1
n−1

are simultaneously satisfied. These conditions can be simplified and related to the pointer
distribution width by noting that (i) for even n, Q̂n = 1̂ so that (Qn)w = 1 and for odd
n, Q̂n = Q̂ so that (Qn)w = Qw; and (ii) if �x is characterized by the Gaussian width δx of
the pointer distribution, then �px ∼

h̄
δx

. Straightforward application of (i) and (ii) yields

(a) δx � γ |Qw| and (b) δx �
(

γ

min(n=2,4,...)

{
1, |Qw| 1

n−1
}) . (10)

It is interesting to see how these conditions are used to ensure the validity of approximation
(9) in the ‘gedanken experiment’ when a |Qw| > 1 measurement is to be made. In this case
condition (b) becomes δx � γ and (a) is the dominant condition which must be satisfied since
satisfaction of (a) also satisfies (b). Restating condition (a) as

γ |Qw|
δx

	 1

makes it clear that measurements of eccentric values of Qw require pointer state distribution
widths that are much greater than its associated x-direction peak translations.

3. Creation mechanism for the weak energy of evolution

Fundamental to the theory of weak values is the proposition that although the measurement
of Â occurs at time t0, the PPS states appearing in equation (5) are actually pre-selected and
post-selected at times ti < t0 and tf > t0, respectively. PPS states selected at these times
define past and future boundary conditions which influence Aw at measurement time t0 via
their unitary evolutions forward in time from ti to t0 and backward in time from tf to t0.

Such unitary evolutions are also responsible for the creation of the weak energy of
evolution at the time of measurement. In order to understand this mechanism, consider the
time ordered set A(t) ≡ {Aw(t) : t ∈ T }, where Aw(t) is the theoretical weak value of Â at
interaction time t and T ≡ [t1, t2] is a fixed closed time interval such that (i) at each time
t ∈ T the weak value Aw(t) is defined by a state |ψi(ti)〉 which has been pre-selected at time
ti = t − �ti and by a state |ψf (tf )〉 which will be post-selected at time tf = t + �tf , where
�ti and �tf are fixed time intervals; and (ii) these PPS states continuously change from their
initial states at times ti = t1 − �ti and tf = t1 + �tf , respectively, in accordance with the
Schrödinger equations

d|ψi(ti)〉
dti

= − i

h̄
Ĥi |ψi(ti)〉, (11)

ti ∈ [t1 − �ti, t2 − �ti], and

d|ψf (tf )〉
dtf

= − i

h̄
Ĥf |ψf (tf )〉, (12)

6
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tf ∈ [t1 + �tf , t2 + �tf ]. Clearly, such PPS state dynamics can occur naturally or—as will be
the case in the ‘gedanken experiment’ discussed below in section 7—they can be artificially
induced. For future reference, the set A(t) is called the theoretical evolutionary profile for
Aw(t) over T, the set Aq(t) ≡ {Re Aw(t) : t ∈ T } is the theoretical pointer position profile of
weak value observations, and the set Ap(t) ≡ {Im Aw(t) : t ∈ T } is the theoretical profile of
values which effect the pointer momentum distribution.

The discussion of weak values in the last section tacitly assumes that the PPS states used
there are fixed and do not change with time—so that effectively Ĥi = 0̂ = Ĥf . However,
when the Hamiltonians Ĥi and Ĥf are non-vanishing and explicitly time independent, then
the unitary evolutions of these PPS states to the measurement time t are given by

|ψi(t)〉 = e− i
h̄
Ĥi�ti |ψi(ti)〉 ≡ Û |ψi(ti)〉 and |ψf (t)〉 = e

i
h̄
Ĥf �tf |ψf (tf )〉 ≡ V̂ |ψf (tf )〉.

(13)

Application of these results to equation (5) yields the following time explicit form for the
weak value of Â:

Aw(t) = 〈ψf (tf )|V̂ †ÂÛ |ψi(ti)〉
〈ψf (tf )|V̂ †Û |ψi(ti)〉

= 〈ψf (t)|Â|ψi(t)〉
〈ψf (t)|ψi(t)〉 . (14)

When these conditions prevail, equations (11) and (12) apply when ti and tf are replaced
throughout by t ∈ T . This is the case because [Û , Ĥi] = 0 = [V̂ , Ĥf ] so that the actions of
Ĥi and Ĥf upon the associated PPS states at times ti and tf are transformed by the operators
Û and V̂ into actions of these Hamiltonian operators upon the evolved PPS states at the
measurement time t. In particular, from equations (13)

d|ψi(t)〉
dt

= Û
d|ψi(ti)〉

dti

dti

dt
= − i

h̄
Û Ĥi |ψi(ti)〉 = − i

h̄
Ĥi |ψi(t)〉 (15)

and
d|ψf (t)〉

dt
= V̂

d|ψf (tf )〉
dtf

dtf

dt
= − i

h̄
V̂ Ĥf |ψf (tf )〉 = − i

h̄
Ĥf |ψf (t)〉, (16)

where use is made of the fact that Û and V̂ are constant operators.
If Ȧw(t) ≡ dAw(t)

dt
exists at each t ∈ T , then Aw(t) is a continuous function over T and

the associated equation of motion for Aw(t) can be obtained by taking the time derivative of
equation (14). This initially yields

Ȧw(t) =
{

d
〈
ψf (t)

∣∣
dt

Â|ψi(t)〉 + 〈ψf (t)|dÂ

dt
|ψi(t)〉 + 〈ψf (t)|Âd|ψi(t)〉

dt

}
〈ψf (t)|ψi(t)〉−1

−〈ψf (t)|Â|ψi(t)〉
{

d〈ψf (t)|
dt

|ψi(t)〉 + 〈ψf (t)|d|ψi(t)〉
dt

}
〈ψf (t)|ψi(t)〉−2.

After applying equations (15) and (16), requiring that operator Â be time independent, and
rearranging the result, it is found that the equation of motion for Aw(t) is given by

Ȧw = i

h̄
{(Hf A − AHi)w − Aw(Hf − Hi)w}. (17)

The explicit time dependence of the quantities in this expression has been suppressed for the
sake of notational simplicity. However, each w subscripted quantity appearing in this equation
depends upon the measurement time t because it is defined in terms of t-dependent PPS states.

The peculiar factor (Hf −Hi)w appearing in the second term of equation (17) is the weak
energy of evolution for the PPS system. It is clearly contemporaneous with the measurement
time t and since it has the mathematical form of the weak value of Ĥf − Ĥi , it can be

7
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determined theoretically when Ĥf − Ĥi and the PPS states are known. Also, observe that
if |ψi(t)〉 = |ψf (t)〉 with Ĥf = Ĥi = Ĥ , then the weak energy of evolution vanishes and
equation (17) assumes the form of the usual equation of motion for the mean value of Â given
by

Ȧw −→ 〈Ȧ〉 = i

h̄
〈[Ĥ , Â]〉. (18)

Several additional relationships between Aw(t) and the weak energy of evolution
can be deduced from equation (17). First, suppose that |ψi(t)〉 and |ψf (t)〉 are non-
orthogonal stationary states of Ĥi and Ĥf , respectively, with Ĥi �= Ĥf . In this case—since
Ĥi |ψi(t)〉 = Ei |ψi(t)〉 and Ĥf |ψf (t)〉 = Ef |ψf (t)〉—then (Hf A − AHi)w = (Ef − Ei)Aw

and (Hf − Hi)w = (Ef − Ei) so that Ȧw = 0 and Aw is constant with time. Also, inspection
of equation (17) reveals the following special case results: (a) if Ap(t) = ∅ (the empty set) so
that A(t) = Aq(t), then both (Hf A − AHi)w and (Hf − Hi)w are pure imaginary quantities
during the time interval T; and (b) if Aq(t) = ∅ so that A(t) = iAp(t), then (Hf A − AHi)w
is real valued and (Hf − Hi)w is pure imaginary during T.

The utilization of equations (15) and (16) in the derivation of equation (17) identifies
the mechanism responsible for creating the weak energy of evolution at measurement time.
The associated identities Ĥi |ψi(t)〉 = ÛĤi |ψi(ti)〉 and Ĥf |ψf (t)〉 = V̂ Ĥf |ψf (tf )〉 formally
establish the forward and backward time evolutions of the Hamiltonian actions upon the
PPS states at times ti < t and tf > t as the mechanism which creates the weak energy of
evolution at measurement time t. It is important to emphasize—as the above development has
shown—that (Hf − Hi)w is an artefact of dynamics of the PPS states and is not a quantity
that is directly measured during the measurement of Aw. However, this artefact is physically
significant because it defines phases and associated phase factors that play crucial roles in
determining Aw at measurement time when Aw is time dependent. This is the focus of the
following section where the form of the general solution to equation (17) is used to identify
these phases and phase factors.

4. Intrinsic phases of evolution

Finding the solution to equation (17) requires application of the exponential integrating factor

e
i
h̄

∫ t

t1
(Hf −Hi)wdt ′ . Using this factor, it is easily determined that the general solution for Aw(t)

when t ∈ T is

Aw(t) = e− i
h̄

∫ t

t1
(Hf −Hi)wdt ′

{
Aw(t1) +

i

h̄

∫ t

t1

e
i
h̄

∫ t ′
t1

(Hf −Hi)wdt ′′
(Hf A − AHi)w dt ′

}
. (19)

Note that this general solution is consistent with the properties of Aw discussed in the last
section. For example, if |ψi(t)〉 = |ψf (t)〉 and Ĥi = Ĥf , then equation (19) becomes
equation (18)’s general solution for 〈A〉. Also, if the PPS states are non-orthogonal stationary
states, then equation (19)—upon integration by parts of the second term in curly braces—yields
the required result Aw(t) = Aw(t1).

The form of this solution shows that the time-integrated (i.e., time accumulated) weak
energy of evolution is an intrinsic attribute of Aw(t). It is also clear that this quantity determines
and influences Aw(t) through the associated phase factors which have been introduced into
the general solution by the integrating factor. As will be shown below, the time-integrated
weak energy of evolution is equal to the sum of a real valued dynamical phase difference and
a complex valued pure geometric phase difference. These dynamical and geometric phases
are accumulated by the system as the PPS states evolve during the time interval T.

8
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It is obvious that since (Hf −Hi)w can be complex valued, then so can the time-integrated
weak energy of evolution. In order to determine the physical significance of this phase and
analyse the influence of the associated phase factors upon Aw(t), it is useful to relate the
time-integrated weak energy to more familiar physical quantities. Since this integral can be
written as

1

h̄

∫ t

t1

(Hf − Hi)w dt ′ = 1

h̄

∫ t

t1

(Hf )w dt ′ − 1

h̄

∫ t

t1

(Hi)w dt ′, (20)

this relationship can be more easily identified by separately examining each term on the
right-hand side of this equation.

Consider the first term and observe that the action of the Hamiltonian operator Ĥf upon
the state |ψf (t)〉 can be uniquely written as [3]

Ĥf |ψf (t)〉 = 〈Hf 〉|ψf (t)〉 + �Hf

∣∣ψ⊥
f (t)

〉
, (21)

where 〈Hf 〉 = 〈ψf (t)|Ĥf |ψf (t)〉 and �Hf =
√〈

H 2
f

〉 − 〈Hf 〉2. The orthogonal companion
state

∣∣ψ⊥
f (t)

〉
belongs to the associated Hilbert subspace which is the orthogonal complement

of the subspace containing |ψf (t)〉 and satisfies the conditions
〈
ψ⊥

f (t)
∣∣ψf (t)

〉 = 0 and
�Hf = 〈

ψ⊥
f (t)

∣∣Ĥf |ψf (t)〉. Equation (21) provides the following definition for (Hf )w when
the dual form of this equation is first used to form the scalar product with the state |ψi(t)〉 and
then this product is divided by〈ψf (t)|ψi(t)〉 �= 0:

(Hf )w = 〈Hf 〉 + �Hf

〈
ψ⊥

f (t)
∣∣ψi(t)〉

〈ψf (t)|ψi(t)〉 .

Substituting this expression for the integrand in the first integral on the right-hand side of
equation (20) yields

1

h̄

∫ t

t1

(Hf )w dt ′ = δf (t) + βf (t), (22)

where

δf (t) ≡ 1

h̄

∫ t

t1

〈Hf 〉 dt ′ (23)

is identified as an intrinsic real valued dynamical phase that results from the evolution of the
state |ψf (t ′)〉 during the time interval [t1, t]. The second term in equation (22) defines an
intrinsic complex valued phase

βf (t) ≡ 1

h̄

∫ t

t1

�Hf

〈
ψ⊥

f (t ′)
∣∣ψi(t

′)〉
〈ψf (t ′)|ψi(t ′)〉 dt ′ (24)

which results from the evolution of |ψf (t ′)〉, ∣∣ψ⊥
f (t ′)

〉
, and |ψi(t

′)〉 during [t1, t].
In a similar manner, since

Ĥi |ψi(t)〉 = 〈Hi〉 |ψi(t)〉 + �Hi |ψ⊥
i (t)〉,

then the second integral in equation (20) can be written as the sum

1

h̄

∫ t

t1

(Hi)w dt ′ = δi(t) + βi(t), (25)

where

δi(t) ≡ 1

h̄

∫ t

t1

〈Hi〉 dt ′ (26)

9
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is an intrinsic real valued dynamical phase that results from the evolution of the state |ψi(t
′)〉

during the interval [t1, t] and

βi(t) ≡ 1

h̄

∫ t

t1

�Hi

〈ψf (t ′)
∣∣ψ⊥

i (t ′)
〉

〈ψf (t ′)|ψi(t ′)〉 dt ′ (27)

is an intrinsic complex valued phase that results from the evolution of |ψi(t
′)〉, ∣∣ψ⊥

i (t ′)
〉
, and

|ψf (t ′)〉 during [t1, t].
Equations (22) and (25) can now be used to write equation (20) as

1

h̄

∫ t

t1

(Hf − Hi)w dt ′ = δf (t) − δi(t) + βf (t) − βi(t). (28)

It can be concluded from this and equation (19) that the time accumulation of the forward
and backward time evolutions of the actions of the Hamiltonians Ĥiand Ĥf upon the
associated PPS states to the measurement time t is physically manifested at t as the sum
δf (t)− δi(t)+βf (t)−βi(t) of the intrinsic phases of evolution which determine and influence
Aw at t via the associated exponential phase factors. Although δf (t) and δi(t) have been
clearly identified as dynamical phases that result from the evolutions of the post-selected and
pre-selected states, respectively, a more complete characterization of the properties of the
phases βf (t) and βi(t) is desirable.

5. The pure geometric nature of βf (t) and βi(t)

This section shows that the phases βi(t) and βf (t) are purely geometric by demonstrating
their invariance under both local U(1) gauge transformations and time reparameterization. In
addition, a useful relationship is established between the intrinsic phases of evolution and a
Pancharatnam phase angle and a Fubini–Study metric distance defined by the evolving PPS
states in the associated Hilbert space.

First consider the local gauge invariance of βf (t). Observe that �Hf is invariant under
the local U(1) gauge transformation |ψf (t ′)〉 → eiθf (t ′)|ψf (t ′)〉 and that via equation (21)
this transformation also implies that

∣∣ψ⊥
f (t ′)

〉 → eiθf (t ′)
∣∣ψ⊥

f (t ′)
〉

when �Hf �= 0. Also, when

|ψi(t
′)〉 → eiθi (t

′)|ψi(t
′)〉, then〈

ψ⊥
f (t ′)

∣∣ e−iθf (t ′) eiθi (t
′)|ψi(t

′)〉
〈ψf (t ′)| e−iθf (t ′) eiθi (t ′)|ψi(t ′)〉 =

〈
ψ⊥

f (t ′)
∣∣ψi(t

′)〉
〈ψf (t ′)|ψi(t ′)〉

and it can be concluded from equation (24) that the phase βf (t) is invariant under local U(1)

gauge transformations.
Now reparameterize the time t ′ as τ(t ′) such that τ(t ′) is monotone increasing over

the interval [τ(t1), τ (t)] and |ψf (t ′)〉 = |ψ ′
f

(
τ(t ′)

)〉 ≡ |ψ ′
f (τ )〉 with state end points

|ψ ′
f (τ (t1))〉 = |ψf (t1)〉 and |ψ ′

f (τ (t))〉 = |ψf (t)〉. It is easy to see that under this

reparameterization �Hf dt ′ = �H ′
f dτ , where �H ′

f =
√〈

H ′2
f

〉 − 〈
H ′

f

〉2
with Ĥ ′

f |ψ ′
f (τ )〉 =

ih̄ d
dτ

|ψ ′
f (τ )〉. The reparameterization |ψf (t ′)〉 = |ψ ′

f

(
τ(t ′)

)〉 also implies via equation (21)
that

∣∣ψ⊥
f (t ′)

〉 = ∣∣ψ⊥′
f (τ (t ′))

〉
. Thus,

1

h̄

∫ t

t1

�Hf

〈
ψ⊥

f (t ′)
∣∣ψi(t

′)〉
〈ψf (t ′)|ψi(t ′)〉 dt ′ = 1

h̄

∫ τ(t)

τ (t1)

�H ′
f

〈
ψ⊥′

f (τ )
∣∣ψ ′

i (τ )〉
〈ψ ′

f (τ )|ψ ′
i (τ )〉 dτ

from which it may be concluded that the phase βf (t) is invariant under this time
reparameterization.

10
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In a similar manner it can be demonstrated that βi(t) is also U(1) gauge invariant and time
reparameterization invariant. Thus, when taken together, these invariance properties show that
both the complex valued intrinsic phases of evolution βf (t) and βi(t) are pure geometric
phases in the sense that their values depend only upon the associated smooth evolutionary
paths in projective Hilbert space and remain unchanged for any lifts to smooth monotone-
increasing parameterized evolutionary paths in Hilbert space which canonically project onto
these paths [41].

The results developed in [39] can be used to define the following Pancharatnam phase
angle χ(t ′) and Fubini–Study metric distance s(t ′) associated with the evolutions of the PPS
states in Hilbert space:

χ(t ′) ≡ arg〈ψf (t ′)|ψi(t
′)〉

and

s(t ′) ≡ 2
√

1 − |〈ψf (t ′)|ψi(t ′)〉|2,
where t ′ ∈ [t1, t]. It is also shown in [39] that

(Hf − Hi)w = h̄χ̇ + ih̄

{
s

4 − s2

}
ṡ.

Consequently,
1

h̄

∫ t

t1

Re(Hf − Hi)w dt ′ =
∫ t

t1

χ̇ dt ′ = χ(t) − χ(t1)

and

1

h̄

∫ t

t1

Im(Hf − Hi)w dt ′ =
∫ t

t1

{
s

4 − s2

}
ṡ dt ′ = ln

√
4 − s2(t1)

4 − s2(t)
.

Using the last two equations in equation (28)—along with the fact that βf (t) and βi(t) are
complex valued—yields the following relationships between the intrinsic phases of evolution
and the associated Pancharatnam phase angle and Fubini–Study metric distance:

δf (t) − δi(t) + Re βf (t) − Re βi(t) = χ(t) − χ(t1) (29)

and

Im βf (t) − Im βi(t) = ln

√
4 − s2(t1)

4 − s2(t)
. (30)

Thus, a phase factor in the general solution for Aw(t) with argument given by the left-hand side
of equation (29) is equivalent to a phase factor with the Pancharatnam phase angle difference
χ(t)−χ(t1) as its argument. However—because of equation (30)’s logarithmic relationship—
a phase factor in the general solution with its argument given by the left-hand side of
equation (30) is equivalent to a multiplicative scale factor that is dependent only upon the
Fubini–Study metric distance. As an application, these equivalences are used in the next
section to provide a simple complex plane vector rotation and length scaling model for the
evolution of Aw(t).

6. Application: the evolution Aw(t) in the Argand plane

Equations (29) and (30) can now be used to rewrite equation (19) in the equivalent form

Aw(t) = e−i(χ(t)−χ(t1))

√
4 − s2(t1)

4 − s2(t)

⎧⎨⎩Aw(t1) +

i
h̄

∫ t

t1
ei(χ(t ′)−χ(t1))

√
4−s2(t ′)
4−s2(t1)

(Hf A − AHi)w dt ′

⎫⎬⎭ .

(31)

11
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However, the influence of the intrinsic phases of evolution (via χ and s) upon Aw(t) is more
transparent from an analysis of the phase-induced motion of the vector representation of Aw(t)

in the Argand plane. This representation is obtained by defining

−→
A (t) ≡

(
Re Aw(t)

Im Aw(t)

)
,

S(t) ≡
√

4 − s2(t1)

4 − s2(t)
,

R̃(t) ≡
(

cos(χ(t) − χ(t1)) sin(χ(t) − χ(t1))

−sin(χ(t) − χ(t1)) cos(χ(t) − χ(t1))

)
,

and
−→
I (t) ≡ 1

h̄

∫ t

t1

S−1(t ′)M̃(t ′)−→B (t ′) dt ′,

where

M̃(t ′) ≡
(

sin(χ(t ′) − χ(t1)) cos(χ(t ′) − χ(t1))

− cos(χ(t ′) − χ(t1)) sin(χ(t ′) − χ(t1))

)
,

and

−→
B (t ′) ≡

(
Re(Hf A − AHi)w

Im(Hf A − AHi)w

)
,

and then using these definitions to rewrite equation (31) as
−→
A (t) = S(t)R̃(t)[

−→
A (t1) − −→

I (t)]. (32)

It is apparent from this equation that the gross features of the motion of
−→
A (t) in the

Argand plane are directly influenced by the intrinsic phases of evolution via the continuous

R̃(t) rotation of [
−→
A (t1) − −→

I (t)] about the origin through the Pancharatnam phase angle
χ(t)−χ(t1) (= δf (t)−δi(t)+Re βf (t)−Re βi(t) ) and the associated continuous multiplicative
scaling of this rotated vector difference by S(t) (= exp

(
Im βf (t) − Im βi(t)

)
). The continuous

change in [
−→
A (t1)−

−→
I (t)] is induced by

−→
I (t) and results from a time-integrated continuously

scaled (by S−1(t ′)) action of a Pancharatnam phase angle transformation (i.e., M̃(t ′)) upon−→
B (t ′). Therefore, it too depends upon the time-integrated influence of the intrinsic phases of
evolution.

It is interesting to consider within the context of these results special cases (a) and (b)
that are given in section 3. In both of these cases (Hf − Hi)w is pure imaginary so that Aw(t)

is influenced only Im βf (t) − Im βi(t). Thus, only scaling occurs and there is no continuous

rotation of
−→
A (t) by R̃(t) in the Argand plane. For case (a) the quantity (Hf A − AHi)w is

pure imaginary and equation (32) becomes

Re Aw(t) = S(t)

[
Re Aw(t1) − 1

h̄

∫ t

t1

S−1(t ′)Im(Hf A − AHi)w dt ′
]

(33)

and Im Aw(t) = 0. For case (b) the quantity (Hf A−AHi)w is real and equation (32) becomes

Im Aw(t) = S(t)

[
Im Aw(t1) +

1

h̄

∫ t

t1

S−1(t ′)Re(Hf A − AHi)w dt ′
]

and Re Aw(t) = 0.

12
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7. Example

7.1. An illustration of time-dependent weak value theory

In this section a theoretical description of a time-dependent generalization of the ‘gedanken
experiment’ of section 2 is used to illustrate aspects of the theory developed above. A
hypothetical ‘gedanken experiment’ implementation of this time-dependent generalization is
also briefly discussed.

In the ‘gedanken experiment’ of section 2, let β = ωt , where ω is a constant angular
rotation rate. Then the PPS states at measurement time t ∈ T ≡ [0, t2] are

|ψi(t)〉 ≡ |ψi〉 = cos α|+〉 + sin α|−〉
and

|ψf (t)〉 = cos ωt |+〉 + sin ωt |−〉
and the theoretical evolutionary profile is

Q(t) = {Qw(t) : t ∈ T },
where

Qw(t) = cos(α + ωt)

cos(α − ωt)
(34)

is directly determined from equation (14). Note that Q(t) = Qx(t) and Qpx
(t) = ∅ so that this

case conforms to special case (a) identified in section 3 (i.e., (Hf Q−QHi)w and (Hf −Hi)w
are pure imaginary for t ∈ T ).

The form of the general solution given by equation (19) can be used to illustrate how the
intrinsic phases of evolution influence Qw(t) during the measurement process and how they
determine the right-hand side of equation (34). Using equations (11) and (12) it is found that
Ĥi = 0̂ and Ĥf = h̄ωσ̂y , where σ̂y is the Pauli y-component spin operator. Consequently, the
weak energy of evolution is pure imaginary (as required) and is given by

(Hf − Hi)w = h̄ω(σy)w = −ih̄ω tan(α − ωt).

Since Ĥi = 0̂, then δi(t) = 0 = βi(t) (equations (26) and (27)) and since (Hf − Hi)w is pure
imaginary, then δf (t) = 0 = Re βf (t) (equations (23) and (24)) so that

1

h̄

∫ t

0
Im(Hf − Hi)w dt ′ = 1

h̄

∫ t

0
Im(Hf )w dt ′ = ln

[
cos α

cos(α − ωt)

]
= Im βf (t).

Thus, the phase factors e± i
h̄

∫ t

0 (Hf −Hi) dt ′ appearing in the general solution become

e± i
h̄

∫ t

0 (Hf −Hi) dt ′ = e∓Im βf (t) =
[

cos α

cos(α − ωt)

]∓1

. (35)

The intrinsic phases of evolution determine Qw(t) through the multiplicative operation
of these phase factors. In particular, since Qw(0) = 1 (equation (34)), then the contribution
of the first term in equation (19) to (34) is

e− i
h̄

∫ t

0 (Hf −Hi)w dt ′Qw(0) = cos α

cos(α − ωt)
.

Also, Ĥf Q̂ − Q̂Ĥi = Ĥf Q̂ = h̄ωσ̂yQ̂ = ih̄ωσ̂x , where σ̂x is the Pauli x-component spin

operator. The influence of the phase factor e
i
h̄

∫ t ′
0 (Hf −Hi)w dt ′′ upon

(Hf Q − QHi)w = ih̄ω(σx)w = ih̄ω

[
sin(α + ωt)

cos(α − ωt)

]
13
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in the integrand of the second term of the general solution is the product

e
i
h̄

∫ t

0 (Hf −Hi)w dt ′(Hf Q − QHi)w = ih̄ω

[
sin(α + ωt)

cos α

]
.

The total accumulated influence of e
i
h̄

∫ t

0 (Hf −Hi)w dt ′ upon (Hf Q−QHi)w over the time interval
[0, t] is

i

h̄

∫ t

0
e

i
h̄

∫ t ′
0 (Hf −Hi)w dt ′′(Hf Q − QHi)w dt ′ = cos(α + ωt)

cos α
− 1.

As was the case for the first term, the second term in the general solution results from the same
multiplicative effect of the phase factor e− i

h̄

∫ t

0 (Hf −Hi)w dt ′ upon this integrated influence:

e− i
h̄

∫ t

0 (Hf −Hi)w dt ′
[

i

h̄

∫ t

0
e

i
h̄

∫ t ′
0 (Hf −Hi)w dt ′′(Hf Q − QHi)w dt ′

]
= cos(α + ωt)

cos(α − ωt)
− cos α

cos(α − ωt)
.

Finally, combining these two terms yields the required expression for Qw(t) given by
equation (34).

As mentioned above, this example corresponds to special case (a) identified in section 3.
Thus, as discussed at the end of section 6, the general solution for Qw(t) also has the form
of equation (33) from which it can be seen that only scalings occur during the evolution of
Qw(t). The associated scale factors S(t) and S−1(t) are precisely the phase factors of equation
(35). No rotations occur because the Pancharatnam phase angle for this case vanishes, i.e.
χ(t) − χ(0) = δf (t) − δi(t) + Re βf (t) − Re βi(t) = 0, so that R̃(t) is the identity matrix
and M̃(t) = ( 0

−1
1
0

)
. Consequently, the vector evolution of Qw(t) in the Argand plane takes

place entirely on the real x-axis according to

−→
Q(t) = Qw(t)−→ex,

where −→ex is the unit vector along the positive x-axis.

7.2. Experimental implementations

Assume that the only objective of a hypothetical implementation of this theory as a ‘gedanken
experiment’ is to obtain an experimentally determined pointer position profile for Qw(t). In
order that the post-selected state be explicitly time dependent, an apparatus is used that consists
of N copies of the apparatus depicted in figure 1—except now a small electric motor rotates
the post-selection filter of each copy at a constant angular rate ω with period τ around its
laboratory frame z-axis of symmetry. The rotation start and stop times are identical for each
copy and each records photon detections during the interval T = [0, τ ]. The PPS states for
each copy of the apparatus at a measurement time t are as given in the previous subsection
and each copy is automatically controlled so that conditions (10) are always satisfied and each
detector is both ‘ideal’ (i.e., it is 100% efficient and detects every post-selected photon only)
and ‘intelligent’ (i.e., it records and stores the x-direction position and measurement time for
each detection).

After the measurement process is complete, the detections recorded by the N detectors
are combined and partitioned into M = τ

δt
(M a counting number) time bins of width

δt . N is large enough and δt is small enough so that there are a sufficient number of
detections in each bin to provide an ‘instantaneous’ pointer position distribution profile
from which the peak value corresponding to the associated experimentally determined weak
value Q

exp
w (t�) is extracted. Here t� is the measurement time associated with �th bin. If
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Qexp
x ≡ {

Q
exp
w (t�) : t� ∈ T , 1 � � � M

}
is the experimental pointer position evolutionary

profile, then—when t2 = τ and each experimental value is error free— Qexp
x ⊂ Qx(t).

Instead of using N copies of the apparatus to perform N identical experiments in parallel
(the first method), a single apparatus can be used to perform M experiments sequentially
(the second method). In this case—however—the post-selected state is not explicitly time
dependent: the post-selection filter is fixed for each experiment such that for the �th experiment
the transmission angle setting is β� = ωt� and the detector only need record photon x-positions
to provide a pointer position profile and associated peak value Q

exp
w (β�). Each of the sequential

M experiments can run as long as required to produce its pointer profile. Unlike the first
method, the second method does not require combining and partitioning the data. Ideally
Q

exp
w (β�) = Q

exp
w (t�) so that the experimental pointer position profiles produced by each

method are identical.
Although the second ‘static’ method likely requires more time to perform the

measurements, if the use of an explicitly time-dependent post-selected state is not required
(as is the case here since the stated objective is to produce a pointer position profile for Qw),
then it is preferable to the first method because it requires much fewer resources and is less
complex from a procedural perspective. Obviously, if explicitly time-dependent states are an
experimental requirement, then a ‘static’ approach (exemplified by the second method) cannot
be used. This would be the case—for example—if the experimental objective is to somehow
directly observe the weak energy of evolution at interaction time, since time-dependent states
are required for its creation.

8. Closing remarks

Weak value theory is a special consequence of the time-symmetric reformulation of quantum
mechanics (TSQM). Whereas standard quantum mechanics (QM) describes a quantum system
at a time t using a state evolving forward in time from the past to t, TSQM also uses a second
state evolving backward in time from the future to t. Although TSQM has predicted new
experimentally verified effects which seem impossible according to QM, it is a reformulation
of QM which is consistent with all the predictions made by QM. It therefore seems unlikely
that experiments will be able to directly confirm the forward/backward time evolution of states
(FBTE) interpretation of TSQM [42]. However, this paper has identified the forward/backward
time evolution of Hamiltonian actions upon states as an additional new consequence of TSQM.
As the theory developed above shows, a manifestation of this is the weak energy of evolution
which appears at the time of measurement t of a weak value. It is suggested that a direct
experimental observation of this weak energy at t during an Aw(t) measurement process
would strongly support the FBTE interpretation. Note that since Re Ȧw(t) depends upon the
weak energy of evolution and also defines the slope of Aq(t) at t, then estimates of the slope
made from measured values of Re Ȧw at various times can be used to provide an indirect
observation of the existence and magnitude of the weak energy of evolution.

Both classical and QM equations of motion (e.g., those for the mean values of observables)
assert that the past state of a system determines its future state. As shown above, this
is generally not the case for weak value equations of motion since they depend upon the
dynamics of future post-selected states. Because of this, these equations of motion can be
thought of as being quasi-nonlocal in time. Nonlocal Heisenberg representation equations of
motion associated with potential effects and modular variables have already been identified
[43, 44]. It is suggested that weak value equations of motion represent another category of
nonlocal equations of motion.
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